An etoposide-induced block in vaccinia virus telomere resolution is dependent on the virus-encoded DNA ligase.

نویسندگان

  • A M DeLange
  • M S Carpenter
  • J Choy
  • V E Newsway
چکیده

Etoposide, an inhibitor of the breakage-reunion reaction associated with cellular type II DNA topoisomerases, was shown to inhibit plaque formation of vaccinia virus. This drug had a major effect on the segregation of newly replicated DNA concatemers. Gene expression and the initiation and elongation phases of viral DNA replication were essentially unaffected. Pulsed-field gel electrophoresis of viral DNA replicated in the presence of etoposide revealed two major classes of DNA: the mature monomeric linear genome and DNA that failed to enter the gel (the relative proportions depending on the concentrations of drug). Restriction enzyme analysis showed a severe defect in telomere resolution. In addition, slowly migrating restriction fragments were suggestive of a general recombination defect. We have isolated several etoposide-resistant mutants and used marker rescue and DNA sequencing to localize the resistance-causing mutation to the amino terminus of the viral DNA ligase gene. Inactivation of the DNA ligase also resulted in an etoposide-resistant phenotype, but to a lesser extent. The telomere resolution and segregation defects were corrected both in the drug-resistant mutants and in the DNA ligase knockout mutants. Reinsertion of wild-type or mutant DNA ligase in the viral thymidine kinase locus confirmed the role of the viral DNA ligase in conferring sensitivity not only to etoposide but also to another topoisomerase II inhibitor, 4'-(9-acridinylamino) methanesulphon-m-anisidide (mAMSA). The data suggest that the nonessential DNA ligase is involved in telomere resolution, possibly as part of a general recombinase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vaccinia virus DNA ligase recruits cellular topoisomerase II to sites of viral replication and assembly.

Vaccinia virus replication is inhibited by etoposide and mitoxantrone even though poxviruses do not encode the type II topoisomerases that are the specific targets of these drugs. Furthermore, one can isolate drug-resistant virus carrying mutations in the viral DNA ligase and yet the ligase is not known to exhibit sensitivity to these drugs. A yeast two-hybrid screen was used to search for prot...

متن کامل

Vaccinia virus encodes a polypeptide with DNA ligase activity.

Vaccinia virus gene SalF 15R potentially encodes a polypeptide of 63 kD which shares 30% amino acid identity with S. pombe and S. cerevisiae DNA ligases. DNA ligase proteins can be identified by incubation with alpha-(32P)ATP, resulting in the formation of a covalent DNA ligase-AMP adduct, an intermediate in the enzyme reaction. A novel radio-labelled polypeptide of approximately 61 kD appears ...

متن کامل

A new vaccinia virus intermediate transcription factor.

Transcription of the vaccinia virus genome is mediated by a virus-encoded multisubunit DNA-dependent RNA polymerase in conjunction with early-, intermediate-, and late-stage-specific factors. Previous studies indicated that two virus-encoded proteins (capping enzyme and VITF-1) and one unidentified cellular protein (VITF-2) are required for specific transcription of an intermediate promoter tem...

متن کامل

Specific initiation of replication at the right-end telomere of the closed species of minute virus of mice replicative-form DNA.

We have developed an in vitro system that supports the replication of natural DNA templates of the autonomous parvovirus minute virus of mice (MVM). MVM virion DNA, a single-stranded molecule bracketed by short, terminal, self-complementary sequences, is converted into double-stranded replicative-form (RF) DNA when incubated in mouse A9 fibroblast extract. The 3' end of the newly synthesized co...

متن کامل

Polynucleotide ligase activity in cells infected with simian virus 40, polyoma virus, or vaccinia virus.

The conversion of simian virus 40 (SV40) component II deoxyribonucleic acid to component I has been used to assay polynucleotide ligase in extracts of tissue culture cells. All cell types examined, including chicken, hamster, mouse, monkey, and human cells, contained adenosine triphosphate-dependent ligase. After infection of mouse embryo, monkey kidney, and HeLa cells with polyoma virus, SV40,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 69 4  شماره 

صفحات  -

تاریخ انتشار 1995